These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of the T suppressor circuit of delayed-type hypersensitivity by interferon. Author: Knop J, Stremmer R, Taborski U, Freitag W, de Maeyer-Guignard J, Macher E. Journal: J Immunol; 1984 Nov; 133(5):2412-6. PubMed ID: 6237149. Abstract: The effects of electrophoretically pure murine interferon (Mu-IFN-alpha beta) on the T suppressor pathway and on the T effector cell of delayed hypersensitivity (TDH) were investigated in BALB/c mice, in a 2,4-dinitrofluorobenzene (DNFB) contact-sensitivity model. Various T cell subpopulations, suppressor T cells of the afferent (Ts-aff) and efferent (Ts-eff) types, an auxiliary Ts (Ts-aux), as well as TDH were induced, and their function was assessed in transfer experiments. The results were as follows. At a dose of 5 X 10(3) U, IFN was shown to inhibit the Ts-aff response, when given to the donor animal shortly after induction of the Ts-aff subpopulation or when injected into the recipient 2 hr after spleen cell transfer. Pretreatment in vitro with IFN of the splenic cells to be transferred also abolished the Ts-aff response. Similar amounts of IFN were able to inhibit the generation of Ts-eff in the donor animals, whereas 10-fold-higher amounts were needed in vivo or in vitro to block the functional expression of Ts-eff in the recipient animal. Intravenous injection of IFN into recipients of Ts-eff on day 0 and 1 after sensitization inhibited the expression of the Ts-eff transferred 1 day before ear challenge. This suggests that the Ts-aux response required for the TDH suppression by Ts-eff is blocked by IFN. Secretion of a suppressor factor by Ts in vitro was not blocked by IFN. Treatment of the donor of suppressor factor-secreting Ts with IFN, however, blocked the induction of this Ts. The TDH were not sensitive to IFN even at amounts approximately 100 times higher than those used for the Ts inhibition in vivo as well as in vitro. These results demonstrate that low amounts of IFN may selectively block the suppressor pathway, because induction of these regulatory T cell subsets appears to be particularly sensitive to IFN. The exact mechanism of the IFN-mediated inhibition of Ts is not yet clear. The data suggest an important regulatory function of IFN in delayed-type hypersensitivity (DTH) reactions.[Abstract] [Full Text] [Related] [New Search]