These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Receptor-mediated endocytosis of immunoglobulin-coated colloidal gold particles in cultured mouse peritoneal macrophages.
    Author: Hedin U, Stenseth K, Thyberg J.
    Journal: Eur J Cell Biol; 1984 Sep; 35(1):41-8. PubMed ID: 6237911.
    Abstract:
    Endocytosis of immunoglobulin G (IgG)-coated colloidal gold particles in cultured mouse peritoneal macrophages was studied by scanning and transmission electron microscopy. At 4 degrees C, the tracers adhered to the plasma membrane and accumulated in coated pits located in the bottom of furrows or deep invaginations on the cell surface. In the presence of an excess of unlabeled mouse IgG, cellular binding of the tracer was reduced by 80 to 90%. After warming to 37 degrees C, surface-bound tracer particles were rapidly ingested and transported to small and large vesicles lacking membrane coat. From here, they were then passed over to multivesicular bodies and lysosomes characterized by their content of myelin-like figures and other inclusions. Double-labeling experiments with IgG-coated colloidal gold particles of two different sizes (20 and 5 nm diameter) indicated that the plasma membrane was depleted of binding sites after uptake of a polyvalent ligand. The restoration of the binding capacity was a slow process requiring ongoing protein synthesis. On the basis of these observations, a model for endocytosis of immune complexes in macrophages is presented. It includes the following four steps: IgG-containing macromolecular aggregates bind to specific receptors in the plasma membrane. These appear to be preclustered in coated pits or able to move laterally within the membrane even at 4 degrees C. The receptor-ligand complexes are internalized and transferred sequentially to larger uncoated vesicles or endosomes, multivesicular bodies, and lysosomes with inclusions of varying appearance. Receptors and ligands are degraded within the lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]