These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasticity of non-giant flexion circuitry in chronically cut abdominal nerve cords of the crayfish, Procambarus clarkii.
    Author: Lee MT, Wine JJ.
    Journal: J Physiol; 1984 Oct; 355():661-75. PubMed ID: 6238160.
    Abstract:
    We have investigated the pattern of neuronal activity involved in the gradual return of sensory-evoked abdominal flexions in crayfish with chronically transected nerve cords. Recordings were made from eight types of identified neurone that mediate phasic abdominal movements, in a preparation consisting of the isolated abdominal nerve cord and tailfan. Responses of the cells to pinches and dorsiflexions of the tailfan were compared in two groups of animals: animals whose cords had been cut at the thoracic-abdominal junction 4-17 weeks earlier (chronic preparations), and animals whose cords had been cut at the same site either just before the experiment or up to 6 days earlier (acute preparations). Sensory stimuli produced bursts of spikes in 73% of the fast flexor motoneurones impaled in chronic preparations, but never fired these neurones in acute preparations. However, fast flexor motoneurones in both preparations were fired with approximately equal frequency by single impulses in the giant axons, suggesting that the firing thresholds of these motoneurones had not changed. Sensory stimuli also caused spiking in the extensor inhibitor and the flexor inhibitor in chronic preparations; in contrast, responses in the fast extensor motoneurones were always subthreshold and occasionally hyperpolarizing. None of these cells was fired by similar stimuli in acute preparations. Neurones restricted to the giant axon pathways (lateral, medial, segmental and motor giants) were silent during sensory-evoked flexor discharges in chronically transected cords. Flexor discharges were accompanied by intense activity in non-giant axons recorded from the dorsal cord. Two identified, non-giant interneurones with axons in the dorsal cord were substantially depolarized but never fired by sensory input in chronic preparations. Sensory-evoked firing in the fast flexor motoneurones was not abolished by removal of the posterior stump of the nerve cord at the transection site. About 20% of chronic preparations generated cyclic motor output in response to unpatterned sensory stimulation. The pattern of motor activity that develops in chronically transected cords resembles that seen in normal crayfish during non-giant tailflips. Because cord transection permanently isolates the abdomen from rostral neural centres normally required for the generation of such tailflips, the return of co-ordinated motor output in chronically cut cords may result from the sensory activation of non-giant circuitry within the abdominal nervous system.
    [Abstract] [Full Text] [Related] [New Search]