These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oligonucleotide synthesis by Escherichia coli dnaG primase in conjunction with phage P22 gene 12 protein.
    Author: Wickner S.
    Journal: J Biol Chem; 1984 Nov 25; 259(22):14044-7. PubMed ID: 6238958.
    Abstract:
    The phage P22 gene 12 protein was found to be like the Escherichia coli dnaB protein in that it stimulated phiX174 DNA synthesis in heat-inactivated extracts of dnaB temperature-sensitive cells (see preceding paper, Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043). phiX174 replication catalyzed by the purified P22 12 protein also by-passed the normal requirement for dnaC protein. However, synthesis still required dnaG primase and the DNA polymerase III holoenzyme components. This DNA synthesis reaction has been reconstituted with purified proteins and found to require P22 12 protein, dnaG protein, DNA polymerase III holoenzyme components, 4 dNTPs, Mg2+, any one of ATP, GTP, UTP, or CTP and single-stranded DNA. The reaction has been dissected into partial reactions: (a) in a prepriming reaction, P22 12 protein binds to single-stranded DNA in an ATP-dependent reaction (Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043); (b) in a priming reaction requiring at least one rNTP and the other dNTPs or rNTPs, dnaG primase catalyzes oligonucleotide synthesis dependent on the P22 12 protein-DNA complex; (c) finally, DNA polymerase III holoenzyme components catalyze DNA elongation of the primer.
    [Abstract] [Full Text] [Related] [New Search]