These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+-stimulated, Mg2+-independent ATP hydrolysis and the high affinity Ca2+-pumping ATPase. Two different activities in rat kidney basolateral membranes.
    Author: Ghijsen W, Gmaj P, Murer H.
    Journal: Biochim Biophys Acta; 1984 Dec 19; 778(3):481-8. PubMed ID: 6239653.
    Abstract:
    The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 microM in the absence or presence of 1 microM free Ca2+. At free Mg2+ concentrations of 1 microM and lower, ATP hydrolysis is Mg2+-independent, but is strongly stimulated by submicromolar Ca2+ concentrations (Km = 0.25 microM, Vmax = 24 mumol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.
    [Abstract] [Full Text] [Related] [New Search]