These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NAD (P) H-dependent reduction of nicotinamide N-oxide by an unique enzyme system consisting of liver microsomal NADPH-cytochrome C reductase and cytosolic aldehyde oxidase.
    Author: Kitamura S, Wada Y, Tatsumi K.
    Journal: Biochem Biophys Res Commun; 1984 Dec 28; 125(3):1117-22. PubMed ID: 6240269.
    Abstract:
    NAD (P) H-dependent reduction of nicotinamide N-oxide was investigated with rabbit liver preparations. Microsomes, microsomal NADPH-cytochrome c reductase or cytosolic aldehyde oxidase alone exhibited no nicotinamide N-oxide reductase activity in the presence of NADPH or NADH. However, when the microsomal preparations were combined with the cytosolic enzyme, a significant N-oxide reductase activity was observed in the presence of the reduced pyridine nucleotide. The activity was enhanced by FAD or methyl viologen. Cytosol alone supplemented with NADPH or NADH exhibited only a slight, but when combined with microsomes, a significant N-oxide reductase activity. Based on these facts, we propose a new electron transfer system consisting of NADPH-cytochrome c reductase and aldehyde oxidase, which exhibits nicotinamide N-oxide reductase activity in the presence of the reduced pyridine nucleotide.
    [Abstract] [Full Text] [Related] [New Search]