These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Receptors for vasoactive intestinal peptide and secretin on small intestinal epithelial cells. Author: Binder HJ, Lemp GF, Gardner JD. Journal: Am J Physiol; 1980 Mar; 238(3):G190-6. PubMed ID: 6245588. Abstract: Binding of 125I-labeled vasoactive intestinal peptide (VIP) to dispersed enterocytes prepared from guinea pig small intestine was saturable, temperature dependent, and reversible, and reflected interaction of the labeled peptide with a single class of binding sites. Each enterocyte possessed approximately 60,000 binding sites and binding of the tracer to these sites could be inhibited by VIP [concentration for half-maximal effect (Kd), 12 nM] and by secretin (Kd greater than 1 micro M), but not by glucagon, gastrin, cholecystokinin, calcitonin, bombesin, litorin, physalaemin, substance P, eledoisin, serotonin, carbamylcholine, or histamine. With VIP and secretin, there was a close correlation between the relative potency for inhibition of binding of 125I-VIP and that for increasing cellular cAMP. For a given peptide, however, a 10-fold higher concentration was required for half-maximal inhibition of binding than for half-maximal stimulation of cellular cAMP. In addition to inhibiting binding of 125I-VIP and increasing cellular cAMP in enterocytes, secretin caused an increase in short-circuit current across guinea pig small intestine in vitro. Prostaglandin E1 increased cellular cAMP, but did not alter binding of 125I-VIP and the increase in cAMP caused by prostaglandin E1 plus VIP or secretin was equal to the sum of the increase caused by each agent alone.[Abstract] [Full Text] [Related] [New Search]