These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spontaneous fluctuations of potassium channels in the apical membrane of frog skin.
    Author: Van Driessche W, Zeiske W.
    Journal: J Physiol; 1980 Feb; 299():101-16. PubMed ID: 6247479.
    Abstract:
    1. The previously demonstrated K+-dependent short-circuit current through the skin of frog species Rana temporaria (Zeiske & Van Driessche, 1979), bathed with mucosal K+- and serosal Na+-Ringer solution, was investigated with current-fluctuation analysis. 2. The current-noise spectra were recorded in the frequency range from 1 to 800 Hz and showed a Lorentzian component with a mean plateau value S0 = (1.50 +/- 0.05).10(-20) A2.s.cm-2 and a corner frequency of fc=(81.0 +/- 3.4)Hz(n=14). 3. S0 increased with mucosal K+ concentration, [K]o, while fc remained almost unchanged. A decrease in S0 was observed when serosal Na+ was replaced by K+. 4. Mucosal Cs+ (10 mM) depressed, reversibly, the K+-dependent current noise to the level of the background noise. Moreover, a linear decrease in fc with increasing Cs+ concentration was observed. 5. Among the other tested alkali cations, Rb+ was the only blocker though less potent than Cs+. Tetraethylammonium, 4-aminopyridine, 2.4.6-triaminopyrimidine and amiloride had no effect. 6. Alterations in the transcellular transport of Na+ contained in a mucosal solution with high [K]o resulted in significant changes in K+ current noise. 7. The current-fluctuation intensities decreased with increasing contact time to high [K]o; these changes were concomitant with the previously reported time dependence of the short-circuit current (Zeiske & Van Driessche, 1979). 8. The K+-dependent fluctuations are thought to originate from K+-selective pathways in the apical cell membranes. The description of the K+-current noise by a single Lorentzian suggests that the "K+ channels" switch randomly between an open and closed state. 9. Assuming a two state model for the channel-kinetics, the single channel current i and the channel density M were calculated as i=(0.37 +/- 0.05)pA and M=(0.53 +/- 0.08) mu-2 (n=13).
    [Abstract] [Full Text] [Related] [New Search]