These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves.
    Author: Tao-Cheng JH, Rosenbluth J.
    Journal: Brain Res; 1980 Oct 20; 199(2):249-65. PubMed ID: 6251942.
    Abstract:
    Complementary freeze-fracture replicas of frog peripheral nerves have revealed new details of membrane structures at the node of Ranvier and paranodal axon-Schwann cell junction. At the node both E and P fracture faces of the axolemma have high particle concentrations (approximately 1350/sq. micron and 1600/sq. micron respectively) and these particles do not overlap when tracings from the respective fracture faces are superimposed. A high proportion of the E face particles are large (> 9.5 nm) and cast long shadows while the proportion of large particles in the P face is much lower. In the paranodal region the diagonal pattern of parallel rows in the junctional axolemma always has the same orientation within a given fracture face. In the E face, the parallel rows form a positive (+ 30 degrees) angle to the groove below and in the P face, a negative (-30 degrees) angle to the ridge above. This implies that the diagonal pattern derives from asymmetric subunits that are able to associate along only one axis and are unable to 'flip over' with respect to the junctional membranes.
    [Abstract] [Full Text] [Related] [New Search]