These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acute effects of two melanocytolytic agents, hydroquinone and beta-mercaptoethanolamine, upon tyrosinase activity and cyclic nucleotide levels in murine melanomas.
    Author: Abramowitz J, Chavin W.
    Journal: Chem Biol Interact; 1980 Oct; 32(1-2):195-208. PubMed ID: 6253089.
    Abstract:
    The acute in vitro actions of two potent melanocytolytic agents, hydroquinone (HQ) and beta-mercaptoethanolamine (MEA), were determined in the B-16, Cloudman S-91 and Harding-Passey (HP) murine melanomas grown in vivo. Drug treated melanoma dice (5--480 min) were analyzed for tyrosinase activity and cyclic nucleotide levels (cAMP, cGMP). HQ and MEA effects on tyrosinase activity are complex and vary with tumor type, duration of treatment and agent tested. MEA or HQ inhibited B-16 tyrosinase activity. With combined drug therapy, low concentrations of MEA plus HQ stimulate B-16 tyrosinase activity while high concentrations of the drugs have little effect on enzymatic activity. MEA depresses tyrosinase activity while HQ elevates enzymatic activity in the S-19 melanoma. Both high and low concentrations of the combined drugs (MEA plus HQ) elicit the same response, stimulation at 10 min followed by continued depression of tyrosinase activity for the remainder of the 4 h study period. MEA initially stimulates HP tyrosinase activity followed by depression of enzymic activity. In contrast, HQ initially depresses HP tyrosinase activity followed by stimulation of enzyme activity. In combination the drugs inhibit HP tyrosinase activity. The effects of MEA and/or HQ on murine melanoma cyclic nucleotide levels are equally complex. MEA or HQ elevate cAMP and cGMP levels in all three tumors with the exception of S-91 cGMP levels which are not altered. In combination the drugs increase cyclic nucleotide levels in each of the three tumor types but at different times. No correlation is present between cyclic nucleotide levels and tyrosinase activity. Thus, the action of increased cyclic nucleotide levels in melanogenesis can not be separated from the direct actions of MEA and HQ upon melanogenesis. The divergent effects of MEA and/or HQ on tyrosinase activity and cyclic nucleotide levels in these melanomas are not correlated with the known in vivo melanocytolytic activity of these drugs. Thus, these parameters appear to be inadequate indicators of melanoma cell viability in chemotherapeutic screening of drugs effective in destroying malignant melanoma.
    [Abstract] [Full Text] [Related] [New Search]