These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association of lipid peroxidation and polymerization of membrane proteins with erythrocyte aging.
    Author: Hochstein P, Jain SK.
    Journal: Fed Proc; 1981 Feb; 40(2):183-8. PubMed ID: 6257558.
    Abstract:
    The addition of malondialdehyde to erythrocytes in vitro causes a decrease in bands 1 and 2 of spectrin and an increase in high molecular weight protein polymers. Additionally, this agent causes the formation of fluorscent chromolipids characteristic of those produced during the peroxidation of endogenous membrane phospholipids. These same alterations in proteins and lipids are observed in the membranes of older cells fractionated from freshly drawn blood and in the membranes of reticulocytes induced by treatment of animals with phenylhydrazine, but not in reticulocytes induced by bleeding. The former reticulocytes have a much shorter half-life in the circulation than do either normal erythrocytes or reticulocytes produced consequent to bleeding. These experiments and the apparent paradox of "young" reticulocytes with short half-lives suggest that the in vivo polymerization of membrane proteins consequent to radical-induced peroxidation of membrane lipids may contribute to the altered rheological behavior and hence to the splenic sequestration of cells. They also suggest that increases in intrinsic membrane rigidity due to lipid peroxidation, malondialdehyde, and protein polymerization may be a common feature of both aging in normal erythrocytes and in the accelerated aging that accompanies the administration of radical-generating, hemolytic agents. However, it is cautioned that other polymerization reactions involving disulfides, calcium, or direct radical attack on protein monomers may also be important determinants of the visco-elastic properties of erythrocyte membranes.
    [Abstract] [Full Text] [Related] [New Search]