These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polyamines stimulate DNA-directed DNA synthesis catalyzed by mammalian type C retroviral DNA polymerases.
    Author: Marcus SL, Smith SW, Bacchi CJ.
    Journal: J Biol Chem; 1981 Apr 10; 256(7):3460-4. PubMed ID: 6259167.
    Abstract:
    In the presence of optimal concentrations of Mg2+, rates of activated (gapped) DNA-directed DNA synthesis by purified mammalian type C retroviral DNA polymerases are stimulated greater than 10-fold by the polyamines spermine and spermidine. Such stimulation was not observed using either similar concentrations of the polyamines cadaverine or putrescine or exogenously provided salt or ammonium ions. Avian type C as well as mammalian type B and type D retroviral DNA polymerases, in contrast to the mammalian type C enzyme, were found to be relatively insensitive to spermine and spermidine stimulation. Kinetic analysis of the polyamine stimulation of activated DNA-directed DNA synthesis carried out using spermine and purified Rauscher leukemia virus DNA polymerase revealed at least two distinct mechanisms of activation of DNA synthesis. 1) At DNA concentrations below 2.5 micrograms/ml, spermine appears to interact with the enzyme-DNA complex in order to stimulate synthesis. 2) At DNA concentrations above 2.5 micrograms/ml, increased spermine stimulation is observed which appears to be due to its direct interaction with the activated DNA template resulting in either selective limitation of the formation of "dead-end" enzyme-DNA complexes or its ability to convert such nonproductive enzyme binding sites into productive sites for the initiation of synthetic activity. The addition of spermine to reaction mixtures was found to increase both the apparent Km and Vmax of the activated (gapped) DNA-directed reaction with regard to template concentration.
    [Abstract] [Full Text] [Related] [New Search]