These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of chronic ethanol ingestion on the activity of rat liver mitochondrial 2',3'-cyclic nucleotide 3'-phosphohydrolase. Author: Dreiling CE, Schilling RJ, Reitz RC. Journal: Biochim Biophys Acta; 1981 Jan 08; 640(1):121-30. PubMed ID: 6260167. Abstract: Chronic ethanol ingestion induced a 47% increase in the specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (nucleoside-2':3'-cyclic-phosphate 2'-nucleotidohydrolase, EC 3.1.4.37) in whole mitochondria. Both inner and outer mitochondrial membranes showed increased (cyclic nucleotide)phosphohydrolase activity, but the inner was increased 94% compared to 67% for the outer. Techniques which disrupt membrane structure increased (cyclic nucleotide)phosphohydrolase activity. After these treatments, whole mitochondria from ethanol-treated animals still showed a 50% increase in activity. This increase may be related either to an inherent increase in the resistance of (cyclic nucleotide)phosphohydrolase to protein degradation or turnover, or to ethanol-induced membrane changes. An increase in (cyclic nucleotide)phosphohydrolase reaction medium pH was observed when freshly isolated, highly-coupled mitochondria were used. The total increase in pH was about 2-fold greater in the controls compared to the ethanol-treated mitochondria. It is suggested that the smaller initial increase in pH and the greater activity of (cyclic nucleotide)phosphohydrolase in the mitochondria from the ethanol-treated animals relate to previously observed changes in the lipid and protein composition of the mitochondrial membranes. In addition, (cyclic nucleotide)phosphohydrolase may represent an excellent marker for membrane integrity.[Abstract] [Full Text] [Related] [New Search]