These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of clonidine and clonidine analogues with alpha-adrenergic receptors of neuroblastoma X glioma hybrid cells and rat brain: comparison of ligand binding with inhibition of adenylate cyclase. Author: Atlas D, Sabol SL. Journal: Eur J Biochem; 1981 Jan; 113(3):521-9. PubMed ID: 6260485. Abstract: Clonidine and several analogues of clonidine are shown to be useful probes for alpha 2-adrenergic receptors in a comparative study of ligand binding and inhibition of adenylate cyclase. The alpha-adrenergic properties of a new potential probe, N-(4-hydroxyphenacetyl)-4-aminoclonidine hydrochloride, are described. [3H]Clonidine binds to alpha-receptors of NG108-15 neuroblastoma X glioma hybrid cell membranes with Kd values of 1.7 and 33 nM for putative high-affinity and low-affinity sites, respectively. p-Aminoclonidine and hydroxyphenacetyl aminoclonidine displace [3H]clonidine from the high-affinity sites with Kd values of 2.3 and 5.8 nM, respectively. Rat brain alpha 2-receptors also exhibit high affinity toward clonidine, p-aminoclonidine, and hydroxyphenacetyl aminoclonidine, as determined by displacement of specifically bound [3H]clonidine. Clonidine, p-amino-clonidine, and hydroxyphenacetyl aminoclonidine elicit modest inhibition (up to 24%) of NG108-125 adenylate cyclase by interaction with alpha 2-receptors (Kd,app 300, 30, and 130 nM, respectively); these compounds also partially reverse the inhibition elicited by (--)-norepinephrine. Components of the adenylate cyclase assay mixture, particularly ATP, GTP, sodium ions, and a nucleoside-triphosphate-regenerating system, decrease the high-affinity [3H]clonidine binding to NG108-15 membranes; in the presence of these components, alpha-receptors possess only low affinity (Kd 43 nM) for [3H]clonidine. The results are consistent with the concept that certain components required for the receptor-mediated inhibition of adenylate cyclase convert alpha 2-receptors from a high-affinity inactive state to a low-affinity active state.[Abstract] [Full Text] [Related] [New Search]