These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 15N- and 2H-substituted maleimide spin labels: improved sensitivity and resolution for biological EPR studies. Author: Beth AH, Venkataramu SD, Balasubramanian K, Dalton LR, Robinson BH, Pearson DE, Park CR, Park JH. Journal: Proc Natl Acad Sci U S A; 1981 Feb; 78(2):967-71. PubMed ID: 6262786. Abstract: The resolution and sensitivity of electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) for biological applications are greatly improved by deuteration and substitution of (15)N for (14)N in the spin-labeled probe N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide (MSL). The EPR and ST-EPR spectra of the deuterated analogue [(2)H]MSL and the (15)N-substituted and deuterated derivative [(15)N, (2)H]MSL were compared with those of the parent MSL. The [(15)N, (2)H]MSL showed the greatest gain in sensitivity and the most marked sharpening of spectral features. These improvements were due to (i) a reduction in the spectral linewidths resulting from the relatively weak hyperfine interactions of the unpaired electron with deuterium and (ii) spectral simplification due to a reduction in the number of nuclear manifolds from three to two in replacing (14)N with (15)N. In the freely tumbling state, the spectra of [(15)N, (2)H]MSL and [(2)H]MSL showed 10-fold and 5-fold increases, respectively, in signal heights compared to MSL. To study the slow tumbling frequencies characteristic of biological molecules, the MSL and its derivatives were covalently bound to the enzyme glyceraldehyde-3-phosphate dehydrogenase [GAPDHaase; D-glyceraldehyde-3-phosphate:NAD(+) oxidoreductase (phosphorylating), EC 1.2.1.12] on cysteine-149 of the catalytic site. The EPR and ST-EPR spectra of [(15)N, (2)H]MSL and [(2)H]MSL adducts showed 3- and 1.5-fold gains in sensitivity, respectively. More important, there were striking increases in resolution, particularly for [(15)N, (2)H]MSL over MSL. These improvements were observed throughout the correlation time range from 0.1 musec to 1 msec. The EPR spectrum of [(15)N, (2)H]MSL-GAPDHase at X-band showed no overlap of the two nuclear manifolds; therefore, all the elements of the A and g tensors could be measured directly from the spectrum. The increase in sensitivity and resolution of the (15)N- and deuterium-substituted spin labels permitted quantitative simulation of the EPR and ST-EPR spectra of a labeled protein. Computation time was reduced 90% by (15)N substitution. Use of (15)N-substituted and deuterated spin probes substantially improved characterization of the motional properties of a protein.[Abstract] [Full Text] [Related] [New Search]