These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship between the Na+/H+ antiporter and Na+/substrate symport in Bacillus alcalophilus.
    Author: Guffanti AA, Cohn DE, Kaback HR, Krulwich TA.
    Journal: Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1481-4. PubMed ID: 6262805.
    Abstract:
    The Na+/H+ antiporter of the obligate alkalophile Bacillus alcalophilus facilitates growth at alkaline pH and precludes growth below pH 8.5. Thus, nonalkalophilic mutant strains do not exhibit Na+/H+ antiport activity and, interestingly, such strains concomitantly lose the ability to catalyze Na+-dependent accumulation of alpha-aminoisobutyrate [Krulwich, T. A., Mandel, D. G. Bornstein, R. F. & Guffanti, A. A. (1979) Biochem. Biophys. Res. Commun. 91, 58-62]. Several other Na+-dependent transport systems are now documented in vesicles from the wild-type strain, and it is demonstrated that these systems are defective in vesicles from the nonalkalophilic mutant KM23. Surprisingly, the defect seems to result not from the loss of Na+/H+ antiport activity per se but from a pleiotropic defect in the Na+/substrate symporters themselves. Monensin, an ionophore that catalyzes Na+/H+ exchange, does not restore respiration-driven Na+/substrate symport in KM23 vesicles. Moreover, with KM23 vesicles, efflux of alpha-aminoisobutyrate, L-malate, and L-aspartate down their respective concentration gradients is not stimulated by Na+, in contrast to the observations with wild-type vesicles. Because monensin should ameliorate a simple defect in Na+/H+ antiport activity and the antiporter should not be required for Na+/substrate symport down a concentration gradient, the results suggest that there may be a direct relationship between the antiporter and various Na+/substrate symporters. One possibility is that the systems share a Na+-translocating subunit.
    [Abstract] [Full Text] [Related] [New Search]