These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of DNA on thyroid-hormone binding by specific receptor proteins from rat-liver nuclei.
    Author: Inoue A, Nakagawa K, Morisawa S.
    Journal: Eur J Biochem; 1981 Mar; 114(3):509-16. PubMed ID: 6263616.
    Abstract:
    Influence of double-stranded native DNA on the binding of thyroid hormone, 3,5,3'-triiodo-L-thyronine, by the isolated nuclear receptors was studied and the following results were obtained. (1) The receptor-triiodothyronine complexes bound to DNA with moderate affinities. (2) DNA enhanced the hormone binding of the receptors. (3) The stimulatory DNA effect on triiodothyronine binding of the receptors was dependent on DNA concentration, showing its maximum at 30 microgram/ml. (4) The increase in triiodothyronine binding was observed not only in the initial velocity but also in the plateau level which was attained after sufficient incubation time. (5) There were two types of specific receptors in the rat liver nuclear extract. The dissociation constants and the maximal binding capacities for triiodothyronine, which were determined by Scatchard plot analysis in the presence and absence of DNA, suggested that DNA exerted its effect through increasing binding capacity on one class of the receptors and through enhancing affinity for the hormone on the other class of the receptors. (6) Among various polynucleotides examined, the double-stranded eukaryotic DNA was most effective in enhancing the hormone binding by the receptors. These results indicate that the nuclear thyroid hormone receptors interact with double-stranded DNA in a specific manner and are induced to bind more thyroid hormone. We interpret these results as suggesting that a ternary complex of triiodothyronine, the receptor and DNA is formed in the cell nucleus in vivo, probably representing an intrinsic step in the hormone action. Possible physiological significance of this effect of DNA on the receptors is discussed.
    [Abstract] [Full Text] [Related] [New Search]