These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Uptake and metabolism of sucrose by Streptococcus lactis.
    Author: Thompson J, Chassy BM.
    Journal: J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012.
    Abstract:
    Transport and metabolism of sucrose in Streptococcus lactis K1 have been examined. Starved cells of S. lactis K1 grown previously on sucrose accumulated [14C]sucrose by a phosphoenolpyruvate-dependent phosphotransferase system (PTS) (sucrose-PTS; Km, 22 microM; Vmax, 191 mumol transported min-1 g of dry weight of cells-1). The product of group translocation was sucrose 6-phosphate (6-O-phosphoryl-D-glucopyranosyl-1-alpha-beta-2-D-fructofuranoside). A specific sucrose 6-phosphate hydrolase was identified which cleaved the disaccharide phosphate (Km, 0.10 mM) to glucose 6-phosphate and fructose. The enzyme did not cleave sucrose 6'-phosphate(D-glucopyranosyl-1-alpha-beta-2-D-fructofuranoside-6'-phosphate). Extracts prepared from sucrose-grown cells also contained an ATP-dependent mannofructokinase which catalyzed the conversion of fructose to fructose 6-phosphate (Km, 0.33 mM). The sucrose-PTS and sucrose 6-phosphate hydrolase activities were coordinately induced during growth on sucrose. Mannofructokinase appeared to be regulated independently of the sucrose-PTS and sucrose 6-phosphate hydrolase, since expression also occurred when S. lactis K1 was grown on non-PTS sugars. Expression of the mannofructokinase may be negatively regulated by a component (or a derivative) of the PTS.
    [Abstract] [Full Text] [Related] [New Search]