These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of (Na+, K+)-ATPase by nanomolar concentrations of GM1 ganglioside.
    Author: Leon A, Facci L, Toffano G, Sonnino S, Tettamanti G.
    Journal: J Neurochem; 1981 Aug; 37(2):350-7. PubMed ID: 6267200.
    Abstract:
    GM1 ganglioside binding to the crude mitochondrial fraction of rat brain and its effect on (Na+, K+)-ATPase were studied, the following results being obtained: (a) the binding process followed a biphasic kinetics with a break at 50 nM-GM1; GM1 at concentrations below the break was stably associated, while over the break it was loosely associated; (b) stably bound GM1 activated (Na+, K+)-ATPase up to a maximum of 43%; (c) the activation was dependent upon the amount of bound GM1 and was highest at the critical concentration of 20 pmol bound GM1 X mg protein-1; (d) loosely bound GM1 suppressed the activating effect on (Na+, K+)-ATPase elicited by firmly bound GM1; (e) GM1-activated (Na+, K+)-ATPase had the same pH optimum and apparent Km (for ATP) as normal (Na+, K+)-ATPase but a greater apparent Vmax; (f) under identical binding conditions (2 h, 37 degrees C, with 40 nM substance) all tested gangliosides (GM1, GD1a, GD1b, GT1b) activated (Na+, K+)-ATPase (from 26-43%); NeuNAc, sodium dodecylsulphate, sulphatide and cerebroside had only a very slight effect. It is suggested that the ganglioside activation of (Na+-K+)-ATPase is a specific phenomenon not related to the amphiphilic and ionic properties of gangliosides, but due to modifications of the membrane lipid environment surrounding the enzyme.
    [Abstract] [Full Text] [Related] [New Search]