These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. Author: Ravdin JI, Guerrant RL. Journal: J Clin Invest; 1981 Nov; 68(5):1305-13. PubMed ID: 6271810. Abstract: The enteric pathogen, Entamoeba histolytica, appears to cause disease by adhering to and then destroying mucosal barriers. Using an in vitro method of studying the interaction of E. histolytica with target cells (Chinese hamster ovary [CHO] and human erythrocytes [RBC]), we examined the mechanism of amebic adherence and its role in lysis of target cells. Killing and phagocytosis of target cells by amebas ceases at 4 degrees C, allowing observation of adherence. Amebas adhere to CHO cells at 4 degrees C, 78.9% formed rosettes (amebas with >/=3 adherent CHO cells each) at 2 h. At 37 degrees C, cytochalasins B and D inhibit adherence of amebas to CHO cells (P < 0.0005). Amebas adhere to and kill CHO cells in media with <0.1 muM calcium and magnesium plus 10 mM EDTA, indicating that divalent cations are not required in the medium. Adherence of amebas to human RBC was not ABO blood group specific and showed greater adherence to human than bovine or sheep RBC (P < 0.005). Neither Fc nor complement receptors were found on amebas by standard rosette studies. The amebic adherence receptor is not trypsin (0.125%) sensitive nor inhibited by trypan blue (1 mM). N-acetyl-d-galactosamine (GALNAc) inhibited the adherence of amebas to CHO cells and human RBC (0.1 g/100 ml or 4.5 mM GALNAc, P < 0.005) by binding to a receptor on the amebic surface. GALNAc abolishes amebic cytolysis of target CHO cells (determined by (111)Indium oxine release from CHO cells, P < 0.001) but not amebic phagocytosis of CHO cells. By suspending ameba-CHO cells rosettes in dextran, we found that GALNAc (1%) reversibly inhibits amebic adherence (P < 0.0005) and that cytochalasins decrease amebic killing of adherent CHO cells (P < 0.025). These findings indicate that the adherence of E. histolytica to target cells requires microfilament function, is via a specific amebic receptor that has affinity for GALNAc, and is required to lyse cells. Inhibition of the adherence of E. histolytica may alter the pathogenicity of this organism.[Abstract] [Full Text] [Related] [New Search]