These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Choleragen-stimulated release of guanyl nucleotides from turkey erythrocyte membranes. Author: Burns DL, Moss J, Vaughan M. Journal: J Biol Chem; 1982 Jan 10; 257(1):32-4. PubMed ID: 6273433. Abstract: Choleragen stimulates adenylate cyclase by ADP ribosylating a guanyl nucleotide-binding regulatory protein (G/F). beta-Adrenergic hormones also activate the adenylate cyclase of turkey erythrocytes, and it is currently believed that they do so in part by decreasing the affinity of G/F factor for GDP, an effect which is manifested by a hormone-stimulated release of guanyl nucleotides from the membranes. Since choleragen might also activate adenylate cyclase by a similar mechanism, the effect of toxin treatment on the release of guanyl nucleotides from turkey erythrocyte membranes was examined. In the presence of NAD, choleragen was found to stimulate release of guanyl nucleotides from membranes which had been preloaded with radiolabeled GTP. No stimulation of release was observed with cAMP or when NAD was replaced by NADP, which does not serve as a substrate for choleragen-catalyzed ADP ribosylation. While either isoproterenol or choleragen can stimulate release of guanyl nucleotides from the membranes, the amount of guanyl nucleotide released in the presence of both isoproterenol and choleragen was no greater than that released by isoproterenol alone. Furthermore, when membranes were first treated with choleragen and NAD, the subsequent release of guanyl nucleotides induced by isoproterenol was reduced to approximately 15% of that observed with membranes not treated with the toxin. Therefore, choleragen may enhance release of guanine nucleotides from sites on the membranes that are also affected by beta-adrenergic agonists, sites which are thought to correspond to G/F. These data are consistent with the hypothesis that choleragen may stimulate adenylate cyclase, in part, by enhancing release of guanyl nucleotides, a mechanism similar to that of beta-adrenergic agonists.[Abstract] [Full Text] [Related] [New Search]