These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coordination environment of the active-site metal ion of liver alcohol dehydrogenase. Author: Makinen MW, Yim MB. Journal: Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6221-5. PubMed ID: 6273859. Abstract: The coordination environment of the catalytically active metal ion of horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) has been investigated by electron paramagnetic resonance (EPR) methods with use of the active-site-specific Co2+-reconstituted enzyme. The EPR absorption spectrum of the metal-substituted enzyme is characteristic of a rhombically distorted environment. The spectrum of the enzyme--NAD+ complex shows approximate axial symmetry of the metal ion site, indicating that binding of the coenzyme induces a structural alteration in the active-site region. This environment is not significantly altered further by binding of the competitive inhibitor pyrazole. To assign the coordination number of the active-site metal ion, the zero-field splitting was determined on the basis of the temperature dependence of the spin--lattice relaxation of the Co2+ ion. The zero-field splitting energies are approximately 9 cm-1 for the free Co2+-reconstituted enzyme and approximately 46 and approximately 47 cm-1 for the enzyme--NAD+ and enzyme--NAD+--pyrazole complex, respectively. On the basis of studies of structurally defined small molecule complexes, these values are compatible with a tetracoordinate metal ion in the active site of the free enzyme but a pentacoordinate metal ion in the binary enzyme--NAD+ complex and in the ternary enzyme--NAD+--inhibitor complex and, therefore, presumably also in the catalytically active ternary enzyme--NAD+--alcohol complex formed in the course of alcohol oxidation.[Abstract] [Full Text] [Related] [New Search]