These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sulfur-free parathyroid hormone analogues containing D-amino acids: biological properties in vitro and in vivo. Author: Rosenblatt M, Coltrera MD, Shepard GL, Gray DA, Parsons JA, Potts JT. Journal: Biochemistry; 1981 Dec 08; 20(25):7246-50. PubMed ID: 6274393. Abstract: Three sulfur-free analogues of bovine parathyroid hormone (bPTH) containing D-amino acids were synthesized by the solid-phase method and their biological properties compared in an in vitro bioassay (rat renal adenylate cyclase assay), a receptor assay for parathyroid hormone (PTH) (canine renal membranes), and an in vivo bioassay (chick hypercalcemia assay). The analogue [Nle8,Nle18,D-Tyr34]-bPTH-(1-34)-amide, which was found to be more than 4 times as potent in vitro as unsubstituted PTH, is the most potent analogue of PTH yet synthesized. The enhanced potency was largely attributable to increased affinity for the PTH receptor. In vivo, however, this analogue was only one-third as potent as bPTH-(1-34). Cumulative evidence suggests that the nearly 15-fold decline in the relative potency when the compound was assayed in vivo is due to the substitution of norleucine for methionine. The other analogues, [D-Val2,Nle8,D-Tyr34]bPTH-(1-34)-amide and [D-Val2,Nle8,Nle18,D=Tyr34]bPTH-(2-34)-amide, were only weakly active in vitro and in vivo, indicating that substitution with D-amino acids at the NH2 terminus of PTH causes markedly diminished receptor affinity. In fact, the placement of a D-amino acid at the NH2 terminus is more deleterious to biological activity than is omission of amino acids at positions 1 and 2.[Abstract] [Full Text] [Related] [New Search]