These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemoresponsiveness to cAMP and folic acid during growth, development, and dedifferentiation in Dictyostelium discoideum.
    Author: Varnum B, Soll DR.
    Journal: Differentiation; 1981; 18(3):151-60. PubMed ID: 6276256.
    Abstract:
    Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum. Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP. Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.
    [Abstract] [Full Text] [Related] [New Search]