These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Endogenous phosphorylation of sarcoplasmic reticulum fragments of rabbit fast skeletal muscles].
    Author: Kurskiĭ MD, Kondratiuk TP, Osipenko AA, Fedorov AN, Grigor'eva VA.
    Journal: Biokhimiia; 1982 Jan; 47(1):34-42. PubMed ID: 6279180.
    Abstract:
    The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000.
    [Abstract] [Full Text] [Related] [New Search]