These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. Author: Goto T, Wang JC. Journal: J Biol Chem; 1982 May 25; 257(10):5866-72. PubMed ID: 6279616. Abstract: An activity from the yeast Saccharomyces cerevisiae, initially noted for its catalysis of aggregation of covalently closed double-stranded DNA rings in the presence of ATP, has been identified as a type II DNA topoisomerase and is designated yeast DNA topoisomerase II. The formation of the DNA aggregate, which has been shown to be a network of DNA rings that are topologically interlocked, requires the presence of a yeast DNA-binding protein in addition to the topoisomerase. In the absence of the binding protein, yeast DNA topoisomerase II catalyzes decatenation and unknotting of duplex DNA rings and the relaxation of negatively or positively supercoiled DNA. All reactions are ATP-dependent and require Mg(II). Similar to other eukaryotic and phage T4-type II DNA topoisomerases, the yeast enzyme does not catalyze DNA supercoiling under the assay conditions employed. The activity is not sensitive to the gyrase inhibitor nalidixic acid, oxolinic acid, or novobiocin. Coumermycin inhibits the activity, however, at a concentration as low as 5 microgram/ml.[Abstract] [Full Text] [Related] [New Search]