These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GABA induced changes in acetylcholine release from slices of guinea-pig brain. Author: Bianchi C, Tanganelli S, Marzola G, Beani L. Journal: Naunyn Schmiedebergs Arch Pharmacol; 1982 Mar; 318(4):253-8. PubMed ID: 6281665. Abstract: The effect of GABA on acetylcholine (ACh) release was investigated on superfused slices of guinea-pig cerebral cortex (CC), caudate nucleus (CN), tuberculum olfactorium and brain stem. GABA (1--6 x 10(-3) mol/l) increased the spontaneous and KCl-evoked ACh overflow in CC and CN, reduced the electrically-evoked release in all areas tested (most evidently in CC and CN) and lowered the threshold of electric stimulation-induced ACh release in CC. These effects were also caused by 3-amino-1-propane sulphonic acid (1 x 10(-3) mol/l) and ethanolamine-O-sulphate (2 x 10(-3) mol/l), were reduced by bicuculline (1 x 10(-4) mol/l) and fully antagonized by picrotoxin (8 x 10(-5) mol/l), but they were not influenced by phentolamine, methysergide, spiroperidol or strychnine. Tetrodotoxin (TTX) (5 x 10(-7) mol/l) blocked the facilitation of spontaneous ACh release by GABA only when the slices were perfused with normal Krebs solution, but not when perfused with a KCl-enriched medium. These results suggest that GABA affects the cholinergic transmitter release through bicuculline- and picrotoxin-sensitive receptors, showing low affinity toward the agonist. Moreover GABA modulation of resting ACh release requires action potentials only in normal [K+]0, but not in high [K+]0, suggesting that GABA-receptive sites are located at cholinergic terminals.[Abstract] [Full Text] [Related] [New Search]