These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal rabbits and in receptor-deficient mutant rabbits.
    Author: Pittman RC, Carew TE, Attie AD, Witztum JL, Watanabe Y, Steinberg D.
    Journal: J Biol Chem; 1982 Jul 25; 257(14):7994-8000. PubMed ID: 6282866.
    Abstract:
    Low density lipoprotein (LDL) catabolism was studied using WHHL rabbits, an inbred strain deficient in LDL receptor activity and, thus, an animal model for homozygous familial hypercholesterolemia. WHHL and normal rabbits were injected with [14C]sucrose-LDL and the tissue sites of LDL degradation were determined 24 h later. On degradation of [14C]sucrose-LDL, the [14C]sucrose ligand remains trapped within tissues as a cumulative measure of degradation. The fractional catabolic rate of [14C]sucrose-LDL in Watanabe heritable hyperlipidemic (WHHL) rabbits was reduced (0.024 +/- 0.010 versus 0.063 +/- 0.026 h-1) but, by virtue of the increased plasma pool, total LDL flux was increased (33.5 +/- 9.6 versus 10.6 +/- 4.4 mg of LDL protein/kg/day). Liver was the predominant site of catabolism in both WHHL and normal rabbits (52.7 +/- 6.9 and 56.6 +/- 6.2% of total degradation). About 90% of hepatic catabolism was attributable to parenchymal cells in both cases. Thus, Kupffer cells, a major component of the reticuloendothelial system, do not play a major role in LDL catabolism in WHHL rabbits. Despite receptor deficiency, the relative contribution of various tissues to overall LDL degradation was not greatly altered and the absolute rate of delivery of LDL to all tissues was increased with the exception of the adrenal. Thus, there was no evidence that the increased degradation occurred in any special subset of "scavenger" cells. Nevertheless, local scavenger cell uptake may be critically important, especially in atherogenesis. If it is assumed that receptor-independent degradation occurs at the same rate in the tissues of WHHL and normal rabbits and that catabolism in the absence of receptors is a linear function of concentration, then one can estimate the fraction of uptake in normal tissues mediated by receptors. The difference in the fraction of the plasma LDL pool cleared per unit of time in normal and WHHL rabbits would reflect the contribution of receptors to fractional clearance. By this calculation, receptor-mediated degradation in normal rabbits was 62% overall, 63% in liver, 92% in adrenal, and 83% in gut.
    [Abstract] [Full Text] [Related] [New Search]