These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bohr-effect and pH-dependence of electron spin resonance spectra of a cobalt-substituted monomeric insect haemoglobin. Author: Gersonde K, Twilfer H, Overkamp M. Journal: Biophys Struct Mech; 1982; 8(3):189-211. PubMed ID: 6284268. Abstract: The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) exhibits an alkaline Bohr-effect and therefore it is an allosteric protein. By substitution of the haem iron for cobalt the O2 half-saturation pressure, measured at 25 degrees C, increases 250-fold. The Bohr-effect is not affected by the replacement of the central atom. The parameters of the Bohr-effect of cobalt CTT IV for 25 degrees C are: inflection point of the Bohr-effect curve at pH 7.1, number of Bohr protons -- deltalog p1/2 (O2)/deltapH = 0.36 mol H+/mol O2 and amplitude of the Bohr-effect curve deltalogp1/2 (O2) = 0.84. The substitution of protoporphyrin for mesoporphyrin causes a 10 nm blue-shift of the visible absorption maxima in both, the native and the cobalt-substituted forms of CTT IV. Furthermore, the replacement of vinyl groups by ethyl groups at position 2 and 4 of the porphyrin system leads to an increase of O2 affinities at 25 degrees C which follows the order: proto less than meso less than deutero for iron and cobalt CTT IV, respectively. Again, the Bohr-effect is not affected by the replacement of protoporphyrin for mesoporphyrin or deuteroporphyrin. The electron spin resonance (ESR) spectra of both, deoxy cobalt proto- and deoxy cobalt meso-CTT IV, are independent of pH. The stronger electron-withdrawing effect by protoporphyrin is reflected by the decrease of the cobalt hyperfine constants coinciding with gparallel = 2.035 and by the low-field shift of gparallel. The ESR spectra of oxy cobalt proto- and oxy cobalt meso-CTT IV are dependent of pH. The cobalt hyperfine constants coinciding with gparallel - 2.078 increase during transition from low to high pH. The pH-induced ESR spectral changes correlate with the alkaline Bohr-effect. Therefore, the two O2 affinity states can be assigned to the low-pH and high-pH ESR spectral species. The low-pH form (low-affinity state) is characterized by a smaller, the high-pH form (high-affinity state) by a larger cobalt hyperfine constant in gparallel. The correlation of the cobalt hyperfine constants of the oxy forms with the O2 affinities is discussed for several monomeric haemoglobins. The Co-O-O bond angle in cobalt oxy CTT IV is characterized by an ozonoid type of binding geometry and varies little during the pH-induced conformation transition. Due to the lack of the distal histidine in CTT IV no additional interaction via hydrogen-bonding with dioxygen is possible; this is reflected by the cobalt hyperfine constants.[Abstract] [Full Text] [Related] [New Search]