These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine.
    Author: Yim CY, Mogenson GJ.
    Journal: Brain Res; 1982 May 13; 239(2):401-15. PubMed ID: 6284305.
    Abstract:
    Extracellular single unit recordings were obtained from the nucleus accumbens of urethane anesthetized rats. It was found that electrical stimulation of the basal lateral and basal medial nuclei of the amygdala produced strong excitatory responses in neurons of the nucleus accumbens, in particular the medial region. Latencies of activation were relatively short with a mean of 10.7 ms. Dopamine applied iontophoretically had a marked attenuating effect on the excitatory response of nucleus accumbens neurons to amygdala stimulation. The spontaneous activity of all neurons recorded from the nucleus accumbens was also suppressed by dopamine, but the excitatory response was more sensitive to dopamine inhibition than the spontaneous activity. Neurons in the nucleus accumbens showed a variety of responses to single-pulse electrical stimulation of the ventral tegmental area (VTA). Some units in the nucleus accumbens received convergent inputs from both the amygdala and the VTA. Stimulation of the VTA also attenuated the response of nucleus accumbens neurons to excitatory inputs from the amygdala. A train of 10 pulses (0.15 ms, 200--600 microA) at 10 Hz delivered to the VTA at 100 ms before stimulation of the amygdala caused attenuation of the original excitatory response. The attenuating effect could be observed irrespective of whether individual single-pulse stimulation of the VTA elicited a response in that particular accumbens neuron or not. 6-Hydroxydopamine injected into the VTA 2 days prior to the recording experiment, or haloperidol injected intraperitoneally 1 h before the recording session, abolished this attenuating effect. However, responses to single-pulse stimulations of the VTA were not abolished. The results suggest that the attenuation of the excitatory response to amygdala stimulation was due to the release of dopamine from mesolimbic dopaminergic neurons. Responses to single-pulse stimulations of the VTA were probably due to activation of non-dopaminergic neurons projecting from the same area. It is suggested as a working hypothesis that this inhibitory effect of dopamine may be an important function of the mesolimbic dopamine pathway in modulating the extent to which limbic structures can exert an influence on the motor system through the accumbens.
    [Abstract] [Full Text] [Related] [New Search]