These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acetyl glycerylphosphorylcholine inhibition of prostaglandin I2-stimulated adenosine 3',5'-cyclic monophosphate levels in human platelets. Evidence for thromboxane A2 dependence. Author: Miller OV, Ayer DE, Gorman RR. Journal: Biochim Biophys Acta; 1982 Jun 11; 711(3):445-51. PubMed ID: 6285985. Abstract: Previous studies with AGEPC (1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) stress the independence of the proaggregatory activity of AGEPC from the platelet cyclooxygenase. However, our dose response analyses in human platelet-rich plasma show distinct primary and secondary waves of aggregation in response to AGEPC. Second wave aggregation is inhibited completely by either 10 micro M indomethacin, a cyclooxygenase inhibitor, or 5.6 micro M 9,11-azoprosta-5,13-dienoic acid, a thromboxane A2 synthetase inhibitor. Simultaneous addition of AGEPC and prostaglandin I2 to platelet-rich plasma results in a marked increase in platelet cyclic AMP, which is not different from the prostaglandin I2 response alone. However, if prostaglandin I2 is added to AGEPC-stimulated platelets at a point where secondary aggregation is just beginning, AGEPC can attenuate prostaglandin I2-stimulated cyclic AMP accumulation. The inhibition by AGEPC is blocked by either cyclooxygenase or thromboxane A2 synthetase inhibitors, and radioimmunoassay of thromboxane B2 confirmed that the inhibition of prostaglandin I2-stimulated cyclic AMP accumulation is due to thromboxane A2 synthesis, and that AGEPC-stimulated secondary aggregation does not start until thromboxane A2 is synthesized. These data suggest that much of the bioactivity of AGEPC is attributable to thromboxane A2.[Abstract] [Full Text] [Related] [New Search]