These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A stereochemical investigation of the hydrolysis of cyclic AMP and the (Sp)-and (Rp)-diastereoisomers of adenosine cyclic 3':5'-phosphorothioate by bovine heart and baker's-yeast cyclic AMP phosphodiesterases.
    Author: Jarvest RL, Lowe G, Baraniak J, Stec WJ.
    Journal: Biochem J; 1982 May 01; 203(2):461-70. PubMed ID: 6288001.
    Abstract:
    Bovine heart cyclic AMP phosphodiesterase, which has a requirement for Mg2+, hydrolyses cyclic AMP with inversion of configuration at the phosphorus atom, but only the (Sp)-diastereoisomer of adenosine cyclic 3':5'-phosphorothioate is hydrolysed by this enzyme. By contrast, the low-affinity yeast cyclic AMP phosphodiesterase, which contains tightly bound Zn2+, hydrolyses both the (Sp)- and the (Rp)-diastereoisomers of adenosine cyclic 3':5'-phosphorothioate, the (Rp)-diastereoisomer being the preferred substrate under V max. conditions. Both of the diastereoisomers of adenosine cyclic 3':5'-phosphorothioate, as well as cyclic AMP, are hydrolysed with inversion of configuration at the phosphorus atom by the yeast enzyme. It is proposed that, with both enzymes, the bivalent metal ion co-ordinates with the phosphate residue of the substrate, and that hydrolysis is catalysed by a direct "in-line' mechanism.
    [Abstract] [Full Text] [Related] [New Search]