These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12. The reduction of single-electron acceptors.
    Author: Jackson RH, Cole JA, Cornish-Bowden A.
    Journal: Biochem J; 1982 May 01; 203(2):505-10. PubMed ID: 6288003.
    Abstract:
    The kinetic characteristics of the diaphorase activities associated with the NADH-dependent nitrite reductase (EC 1.6.6.4) from Escherichia coli have been determined. The values of the apparent maximum velocity are similar for the reduction of Fe(CN)6(3)-and mammalian cytochrome c by NADH. These reactions may therefore have the same rate-limiting step. NAD+ activates NADH-dependent reduction of cytochrome c, and the apparent maximum velocity for this substrate increases more sharply with the concentration of NAD+ than for hydroxylamine. The simplest explanation is that NAD+ activation of hydroxylamine reduction derives solely from activation of steps involved in the reduction of cytochrome c, a flavin-mediated reaction, but these steps are only partly rate-limiting for the reduction of hydroxylamine. At 0.5 mM-NAD+, the apparent maximum velocity was 2.3 times higher for 0.1 mM-cytochrome c as substrate than for 100 mM-hydroxylamine, suggesting that the rate-limiting step during hydroxylamine reduction is a step that is not involved in cytochrome c reduction. A scheme is proposed that can account for the pattern of variation with [NAD+] of the Michaelis-Menten parameters for hydroxylamine and for NADH with hydroxylamine or cytochrome c as oxidized substrate.
    [Abstract] [Full Text] [Related] [New Search]