These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic relatedness among human rotaviruses as determined by RNA hybridization.
    Author: Flores J, Perez I, White L, Perez M, Kalica AR, Marquina R, Wyatt RG, Kapikian AZ, Chanock RM.
    Journal: Infect Immun; 1982 Aug; 37(2):648-55. PubMed ID: 6288569.
    Abstract:
    Viral RNAs from human rotaviruses were compared by gel electrophoresis and by hybridization to probes prepared by in vitro transcription of two well-characterized laboratory strains (Wa and DS-1). Also, the viral RNAs were compared by hybridization to probes prepared from three of the test viruses. Thirteen specimens (diarrheal stools) were obtained from infants and children 5 to 21 months old on a single day at the emergency ward of the Caracas Children's Hospital, and an additional specimen was obtained from the same hospital 6 months before. When the electrophoresed viral RNAs were stained with ethidium bromide and examined by UV light, five different migration patterns (electropherotypes) were distinguished on the basis of differences in mobility of the RNA segments. The hybridization technique that was employed permitted only qualitative comparisons of corresponding genes of different human rotaviruses. Ten of the specimens contained enough virus to yield sufficient RNA for hybridization studies. Eight of the viruses studied by hybridization contained 4 to 11 genes that reacted specifically with the Wa probe to yield double-stranded RNA segments with a mobility similar to that of Wa viral RNA or test virus RNA. The other two viruses contained 11 genes that reacted specifically with the DS-1 hybridization probe to yield double-stranded RNA segments with a mobility similar to DS-1 viral RNA or test virus RNA. A more complex picture emerged when hybridization probes were prepared from three of the test viruses and used to compare the different electropherotypes. Corresponding genes that exhibited similar migration did not necessarily exhibit homology when studied by hybridization. Also, some corresponding genes that exhibited homology did not have the same mobility by gel electrophoresis.
    [Abstract] [Full Text] [Related] [New Search]