These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aerobic and anaerobic respiratory systems in Campylobacter fetus subsp. jejuni grown in atmospheres containing hydrogen. Author: Carlone GM, Lascelles J. Journal: J Bacteriol; 1982 Oct; 152(1):306-14. PubMed ID: 6288661. Abstract: Maximum growth of Campylobacter fetus subsp. jejuni, strain C-61, occurred when the cultures were incubated with shaking in atmospheres containing approximately 30% hydrogen, 5% oxygen, and 10% CO2. Suspensions of cells grown under these conditions consumed oxygen with formate as the substrate in the presence of 0.33 mM cyanide, which completely inhibited respiration with ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine and with lactate. Spectroscopic evidence with intact cells suggested that a form of cytochrome c, reducible with formate but not with lactate or ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine, can be reoxidized by a cyanide-insensitive system. Analysis of membranes from the cells showed high- and low-potential forms of cytochrome c, cytochrome b, and various enzymes, including hydrogenase, formate dehydrogenase, and fumarate reductase. The predominant carbon monoxide-binding pigment appeared to be a form of cytochrome c, but the spectra also showed evidence of cytochrome o. The membrane cytochromes were reduced by hydrogen in the presence of 2-heptyl-4-hydroxyquinoline-N-oxide at concentrations which prevented the reduction of cytochrome c with succinate as the electron donor. Reoxidation of the substrate-reduced cytochromes by oxygen was apparently mediated by cyanide-sensitive and cyanide-insensitive systems. The membranes also had hydrogen-fumarate oxidoreductase activity mediated by cytochrome b. We conclude that C. fetus jejuni has high- and low-potential forms of cytochrome which are associated with a complex terminal oxidase system.[Abstract] [Full Text] [Related] [New Search]