These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism. Author: Campbell IL, Taylor KW. Journal: Biochem J; 1982 Jun 15; 204(3):689-96. PubMed ID: 6289802. Abstract: Adenosine (1.0-100 mum). N(6)-phenylisopropyladenosine (0.1-10 mum) and 2-deoxyadenosine (10 mm) all produced a dose-dependent inhibition of glucose-stimulated insulin release. The inhibition of glucose-stimulated insulin release by adenosine and N(6)-phenylisopropyladenosine was abolished by 3-isobutyl-1-methylxanthine (0.1 mm), whereas 2-deoxyadenosine inhibited insulin release even in the presence of 3-isobutyl-1-methylxanthine. These adenosine nucleosides also inhibited the release of insulin induced by 4-methyl-2-oxopentanoate (20 mm), dl-glyceraldehyde (30 mm) and l-leucine (20 mm). Adenosine (10 mum). N(6)-phenylisopropyladenosine (10 mum) and 2-deoxyadenosine (10 mm) did not inhibit insulin biosynthesis or [U-(14)C]glucose oxidation at concentrations of the nucleosides that gave maximal inhibition of insulin release. However, adenosine, 2-deoxyadenosine and N(6)-phenylisopropyladenosine produced marked inhibition of the glucose-stimulated increases seen in islet cyclic AMP accumulation. Similar to its effects on insulin release, 3-isobutyl-1-methylxanthine (0.1 mm) antagonized the inhibitory effects of cyclic AMP accumulation produced by adenosine and N(6)-phenylisopropyladenosine, but had no effect on the inhibition of cyclic AMP accumulation seen with 2-deoxyadenosine. These results show that adenosine and its specifically modified analogues, 2-deoxyadenosine and N(6)-phenylisopropyladenosine, are strong inhibitors of insulin release from rat islets, a function that appears to be the consequence of their ability to inhibit the accumulation of cyclic AMP. It is proposed that the B cells, in common with many other tissues, may possess two different sites at which adenosine nucleosides interact to produce their biological effects; these are the so-called ;P' and ;R' sites first described by Londos & Wolff [(1977) Proc. Natl. Acad. Sci. U.S.A.74, 5482-5486].[Abstract] [Full Text] [Related] [New Search]