These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stress-induced testicular hyposensitivity to gonadotropin in rats. Role of the pituitary gland.
    Author: Charpenet G, Taché Y, Bernier M, Ducharme JR, Collu R.
    Journal: Biol Reprod; 1982 Oct; 27(3):616-23. PubMed ID: 6291648.
    Abstract:
    The time course of stress-induced testicular hyposensitivity to gonadotropins was studied in hypophysectomized or naloxone-treated rats exposed to various periods of immobilization. Blood was collected from a chronically indwelling intra-atrial catheter every hour for luteinizing hormone (LH) and testosterone (T) measurement. Eight hours of immobilization completely suppressed T secretion without significant effect on LH. Human chorionic gonadotropin (hCG, 5 IU/rat, i.m.) induced a marked increase in plasma T levels in normal control groups 3 h post-injection while in immobilized rats the response was completely abolished, even after only 30 min of stress. In hypophysectomized rats, as expected, plasma T levels were undetectable, but, contrary to results obtained in normal animals, hCG induced a similar increase of plasma T levels both in control and stressed rats. Immobilization stress failed to inhibit plasma T values in hypophysectomized rats pretreated for 4 days with human menopausal gonadotropin (hMG) + hCG, while it did so in similarly treated normal animals. Naloxone induced a rise of plasma LH and T levels in control rats, but did not antagonize the stress-induced fall of plasma T concentration. In all groups, steroid testicular content mimicked variations of plasma T values. In particular, in stressed animals the lack of accumulation of testicular 17-hydroxyprogesterone probably reflected a normal activity of 17-20 lyase. These results indicate that stress induces very rapidly a state of Leydig cell hyposensitivity to gonadotropins and a blockade of T biosynthesis. The causal relationship between the two effects is presently not clear but these events seem to be due to stress-induced release of an inhibitory factor of pituitary origin other that endorphin.
    [Abstract] [Full Text] [Related] [New Search]