These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Magnesium regulation of the beta-receptor-adenylate cyclase complex. II. Sc3+ as a Mg2 antagonist.
    Author: Maguire ME.
    Journal: Mol Pharmacol; 1982 Sep; 22(2):274-80. PubMed ID: 6292689.
    Abstract:
    Sc3+ bears the same relationship to Mg2+ as La3+ to Ca2+, a similar ionic radius but increased charge. Therefore, the possibility was investigated that Sc3+ would be a Mg2+ antagonist at Mg2+ sites on the beta-adrenergic receptor-adenylate cyclase complex of the murine S49 lymphoma cell. Sc3+ is consistently much more potent than La3+ in inhibiting adenylate cyclase regardless of the mode of activation. IC50 values for Sc3+ of 10-30 microM were observed, whereas those for La3+ were about 300 microM. However, Sc3+ does not block the ability of Mg2+ to increase beta-receptor affinity for agonist nor alter agonist affinity by itself. Furthermore, Sc3+ is a weak inhibitor of the beta-receptor-mediated inhibition of Mg2+ influx. In cyc- S49 membranes, in which the catalytic subunit of cyclase cannot interact with the nucleotide-coupling protein(s), Sc3+ is as potent as in wild-type S49 membranes and again more potent than La3+. Substrate kinetics show that Sc3+, like Mg2+, modulates adenylate cyclase activity by affecting the Vmax without altering the Km for substrate. The data suggest that Sc3+ is a specific antagonist of Mg2+ at the Mg2+ site on the catalytic subunit and support the suggestion that there are two distinct sites for Mg2+ with different functions, one site on the coupling protein(s) and one on the catalytic subunit. It was also found that an apparent complex of Sc3+ and F-, ScF4-, is a potent inhibitor of adenylate cyclase, with an IC50 of 3 microM.
    [Abstract] [Full Text] [Related] [New Search]