These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron transfer after flash photolysis of mixed-valence carboxycytochrome c oxidase.
    Author: Boelens R, Wever R, Van Gelder BF.
    Journal: Biochim Biophys Acta; 1982 Nov 15; 682(2):264-72. PubMed ID: 6293558.
    Abstract:
    The light-induced difference spectra of the fully reduced (a2+ a23+-CO) complex and the mixed-valence carboxycytochrome c oxidase (a3+ a23+-CO) during steady-state illumination and after flash photolysis showed marked differences. The differences appear to be due to electron transfer between the redox centres in the enzyme. The product of the absorbance coefficient and the quantum yield was found to be equal in both enzyme species, both when determined from the rates of photolysis and from the values of the dissociation constants of the cytochrome a23+-CO complex. This would confirm that the spectral properties of cytochrome a3 are not affected by the redox state of cytochrome a and CuA. When the absorbance changes after photolysis of cytochrome a23+-CO with a laser flash were followed on a time scale from 1 mus to 1 s in the fully reduced carboxycytochrome c oxidase, only the CO recombination reaction was observed. However, in the mixed-valence enzyme an additional fast absorbance change (k = 7 X 10(3) s-1) was detected. The kinetic difference spectrum of this fast change showed a peak at 415 nm and a trough at 445 nm, corresponding to oxidation of cytochrome a3. Concomitantly, a decrease of the 830 nm band was observed due to reduction of CuA. This demonstrates that in the partially reduced enzyme a pathway is present between CuA and the cytochrome a3-CuB pair, via which electrons are transferred rapidly.
    [Abstract] [Full Text] [Related] [New Search]