These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cholinephosphotransferase in rat lung. In vitro formation of dipalmitoylphosphatidylcholine and general lack of selectivity using endogenously generated diacylglycerol.
    Author: Ide H, Weinhold PA.
    Journal: J Biol Chem; 1982 Dec 25; 257(24):14926-31. PubMed ID: 6294085.
    Abstract:
    Diacylglycerol was generated in vitro in rat lung microsomes by forming phosphatidic acid via sn-glycerol-3-phosphate acyltransferase followed by the hydrolysis of the phosphatidic acid by phosphatidate phosphohydrolase. Diacylglycerol concentrations of 35 to 50 nmol/mg of microsomal protein were obtained. Cholinephosphotransferase activity was determined in microsomes by measuring the conversion of endogenously generated [14C]diacylglycerol to phosphatidylcholine. Reaction rates of 14 to 16 nmol/min/mg of protein were obtained with a 30-s reaction. Diacylglycerol which was primarily dipalmitoylglycerol was produced when palmitic acid was used in the sn-glycerol-3-phosphate acyltransferase reactions. Dipalmitoylphosphatidylcholine was formed via cholinephosphotransferase from the dipalmitoylglycerol with an apparent maximal velocity of 20 nmol/min/mg of protein. When oleic acid was used instead of palmitic acid, the apparent maximal velocity for cholinephosphotransferase was 26 nmol/min/mg of protein. The apparent Km values for the two different diacylglycerol substrates were the same (28.5 nmol/mg of protein). Diacylglycerols, with different molecular species composition, were generated using a variety of fatty acids and fatty acid mixtures. The phosphatidylcholine formed from these diacylglycerols had the same molecular species profiles as the diacylglycerol used as the substrate. The relative reaction rates with the different diacylglycerols were essentially the same except when 20:4 and 22:6 fatty acids were used individually, in which case the rates were lower. We conclude that cholinephosphotransferase readily forms dipalmitoylphosphatidylcholine from endogenously generated dipalmitoylglycerol and that the cholinephosphotransferase reaction is generally nonselective for the diacylglycerol substrate.
    [Abstract] [Full Text] [Related] [New Search]