These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2-sulphur model complex. Author: Beardwood P, Gibson JF, Bertrand P, Gayda JP. Journal: Biochim Biophys Acta; 1983 Jan 26; 742(2):426-33. PubMed ID: 6297591. Abstract: The complex [Fe2S2(S2-o-xylyl)2]2- in DMF (dimethylformamide), DMSO (dimethylsulphoxide) or a 1:1 DMF/DMSO mixture, a model for the chromophore in the 2Fe-2S proteins (ferredoxins), has been reduced and studied by conventional EPR over a temperature range. The low-field feature of the spectrum, Hz, has been computer simulated in order to analyse the lineshape in terms of a convolution product of Lorentzian and Gaussian distributions. The Gaussian contribution to the linewidth and a fixed part of the Lorentzian contribution, which is a function of the solvent and the way it freezes, were measured at a low temperature (less than or equal to 100 K) and subtracted from the linewidths in the higher-temperature range (130-200 K). The variable Lorentzian contribution thus obtained was related to spin-lattice relaxation times. The spin-lattice relaxation times of the sample having 1:1 DMSO/DMF solvent were measured in the range 6 to 11 K by the saturating pulse technique and in the range 10 to 65 K by continuous saturation methods. Up to 65 K the results follow the law 1/T1 alpha T4.5, a relationship which is not readily interpreted in terms of a simple Debye model. At higher temperatures the results may be interpreted in terms either of a dominant Orbach mechanism involving excited states at approx. 900 +/- 50 cm-1 (DMSO, DMF) or 770 +/- 50 cm-1 (1:1 DMSO/DMF), or of a Raman process in which 1/T1 alpha T7.5. The former is compatible with the two-phonon process already described in some ferredoxins, especially those with little anisotropy (gy - gx approximately 0.0) which have characteristically high [J] values.[Abstract] [Full Text] [Related] [New Search]