These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of bacterial glycogen synthesis. Stimulation of glycogen synthesis by endogenous and exogenous cyclic adenosine 3':5'-monophosphate in Escherichia coli and the requirement for a functional CRP gene.
    Author: Leckie MP, Ng RH, Porter SE, Compton DR, Dietzler DN.
    Journal: J Biol Chem; 1983 Mar 25; 258(6):3813-24. PubMed ID: 6300058.
    Abstract:
    In Escherichia coli cya mutants, deficient in adenylate cyclase (EC 4.6.1.1), basal cellular rates of glycogen synthesis were lower and the relative increases produced by exogenous cyclic adenosine 3',5'-monophosphate during growth on glucose were greater than in their respective parent strains. These observations provide strong evidence that endogenous cyclic AMP is one of the key regulators of glycogen synthesis in growing E. coli. In crp mutants, deficient in cyclic AMP receptor protein (CRP), the basal cellular rates of glycogen synthesis were much lower than in their respective parent strains. Stimulation of glycogen synthesis by exogenous cyclic AMP was markedly attenuated in the three crp mutants. Thus, stimulation of glycogen synthesis by either endogenous or exogenous cyclic AMP appears to require CRP. Functional CRP appeared to be required for all three responses observed after cyclic AMP addition: an abrupt step-up in the cellular rate of glycogen synthesis, a continuing exponential increase in rate, and a stimulation of the rate during a subsequent nitrogen starvation. To account for these responses, we derived a mathematical model in which the cyclic AMP-CRP complex regulates the differential rate of synthesis of an enzyme metabolizing an effector of the rate-limiting enzyme of glycogen synthesis.
    [Abstract] [Full Text] [Related] [New Search]