These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of sodium on the alpha 2-adrenergic receptor system of human platelets. Role for intraplatelet sodium in receptor binding.
    Author: Motulsky HJ, Insel PA.
    Journal: J Biol Chem; 1983 Mar 25; 258(6):3913-9. PubMed ID: 6300062.
    Abstract:
    The affinity of many types of membrane receptors for agonists is decreased by Na+ in radioligand binding experiments. We studied the alpha 2-adrenergic receptor of human platelets to determine whether Na+ acts at an intracellular or extracellular location. The Na+ content of intact platelets in an isotonic saline buffer was 38 nmol/10(8) platelets. This increased to 138 nmol/10(8) platelets with the Na+-selective ionophore monensin and decreased to 13 nmol/10(8) platelets with incubation in a Na+-free buffer. Epinephrine-induced platelet aggregation was increased by the addition of monensin and was decreased in the Na+-free buffer, while thrombin-induced aggregation was unaltered by either condition. Monensin, gramicidin, and ouabain (which all increased intraplatelet Na+) caused a 2-3-fold increase in the Kd of epinephrine (in competition with [3H]yohimbine) for alpha 2-adrenergic receptors on intact platelets. Conversely, incubation in a Na+-free buffer (which decreased intraplatelet Na+) decreased the Kd of the receptors for epinephrine 2-3-fold. These experiments suggest that changes in intracellular Na+ alter epinephrine binding. Control studies eliminated several alternative explanations for the effect of monensin on epinephrine binding: 1) monensin altered epinephrine binding only with intact platelets and not with platelet membranes; 2) although monensin depolarized platelets (assessed by [3H]methyltriphenylphosphonium uptake), other depolarizing conditions did not change epinephrine binding; 3) although monensin may increase intracellular pH (by exchanging Na+ for H+) such an increase in pH decreased the Kd of alpha 2-receptors on platelet membranes for epinephrine, an effect opposite to that produced by monensin in intact platelets. We conclude that alterations in the intracellular concentration of Na+ may change the affinity of platelet alpha 2-receptors for epinephrine. These results suggest a key role for intracellular Na+ in modulating binding at cell surface receptors in vivo.
    [Abstract] [Full Text] [Related] [New Search]