These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes.
    Author: Vauquelin G, Cech SY, André C, Strosberg AD, Maguire ME.
    Journal: J Cyclic Nucleotide Res; 1982; 8(3):149-62. PubMed ID: 6300206.
    Abstract:
    Several homogeneous cell systems contain distinct subpopulations of beta-adrenergic receptors, distinguished by their relative sensitivity to N-ethylmaleimide (NEM) in the presence of agonist but not antagonist (G. Vauquelin and M.E. Maguire (1980) Mol. Pharmacol. 18, 363-369). The sensitivity to agonist/NEM inactivation requires receptor interaction with the magnesium-guanine nucleotide coupling proteins (G/F). We have investigated the effects of agonist/NEM treatment on Mg2+ and GTP modulation of receptor affinity in two such systems, turkey erythrocytes and murine S49 lymphoma cells. In each systems, the agonist/NEM-sensitive beta-receptor subpopulation exhibits both Mg2+ and GTP modulation of beta-receptor affinity for agonist. Further, Mg2+ and GTP are not competitive with regard to alteration of receptor affinity; that is, GTP can block the effect of Mg2+, but not vice versa. In contrast, the agonist/NEM-resistant beta-receptor subpopulation shows distinct differences in Mg2+ and GTP effects when the turkey and S49 systems are compared. The agonist/NEM-resistant population in S49 shows no effect of Mg2+ or GTP on beta-receptor affinity for agonist whereas the resistant beta-receptors of turkey erythrocytes still exhibit modulation by both GTP and Mg2+. Moreover, in this receptor population the actions of GTP and Mg2+ are apparently competitive, with increasing Mg2+ concentrations able to overcome the decrease in affinity induced by GTP. Thus, beta-receptor interaction with the metal/nucleotide coupling proteins may differ significantly in the two systems examined. An additional result of these experiments is the demonstration for S49 beta-receptors that free, unchelated GTP or GDP rather than MgGTP or MgGDP modulates receptor affinity for agonist.
    [Abstract] [Full Text] [Related] [New Search]