These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple forms of myeloperoxidase from human neutrophilic granulocytes: evidence for differences in compartmentalization, enzymatic activity, and subunit structure.
    Author: Pember SO, Shapira R, Kinkade JM.
    Journal: Arch Biochem Biophys; 1983 Mar; 221(2):391-403. PubMed ID: 6301375.
    Abstract:
    Multiple forms of myeloperoxidase from normal human neutrophilic granulocytes obtained from a single donor can be resolved by carboxymethyl (CM)-cellulose ion-exchange column chromatography into three forms (I, II, and III) designated in order of elution of adsorbed enzyme using a linear salt gradient. Selective solubilization of individual forms of the enzyme by detergent (form I) or high-ionic-strength procedures (forms II and III) suggested that these forms of the enzyme were compartmentalized differently. All three forms were purified by a combination of preferential extraction, manipulation of ionic strength, and ion-exchange and molecular sieve chromatography. Purified forms II and III had similar specific activities for a variety of substrates. Form I was less active toward several of these same substrates, most notably iodide, with a specific activity about one-half that of forms II and III. All forms had similar spectral properties characteristic of a type alpha heme. The amino acid compositions of the three forms were similar, yet significant differences were found in selected residues such as the charged amino acids. Native polyacrylamide gel electrophoresis resolved small differences in mobility between the forms which were consistent with the charge heterogeneity observed on CM-cellulose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis data were consistent with the generally accepted subunit structure of two heavy chains and two light chains. All three forms contained a small-molecular-weight subunit of Mr 11,500. Form I contained a large subunit of Mr 63,000, while forms II and III contained a corresponding subunit of Mr approximately 57,500. We conclude that heterogeneity of human myeloperoxidase is accompanied by differences in cellular compartmentalization, enzymatic activity, and subunit structure.
    [Abstract] [Full Text] [Related] [New Search]