These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding of [3H]DMCM, a convulsive benzodiazepine ligand, to rat brain membranes: preliminary studies.
    Author: Braestrup C, Nielsen M, Honoré T.
    Journal: J Neurochem; 1983 Aug; 41(2):454-65. PubMed ID: 6308161.
    Abstract:
    DMCM (methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) produces convulsions in mice and rats, probably by interacting with benzodiazepine (BZ) receptors. Investigation of specific binding of [3H]DMCM to rat hippocampus and cortex revealed polyphasic saturation curves, indicating a high-affinity site (KD = 0.5-0.8 nM) and a site with lower affinity (KD = 3-6 nM). BZ receptor ligands of various chemical classes, but not other agents, displace [3H]DMCM from specific binding sites--indicating that [3H]DMCM binds to BZ receptors in rat brain. The regional distribution of [3H]DMCM binding is complementary to that of the BZ1-selective radioligand [3H]PrCC. Specific binding of [3H]DMCM (0.1 nM) was reduced by gamma-aminobutyric acid (GABA) receptor agonist to approximately 20% of the control value at 37 degrees C in chloride-containing buffers; the reduction was bicuculline methiodide- and RU 5135-sensitive. The effective concentrations of 10 GABA analogues in reducing [3H]DMCM binding correlated closely to published values for their GABA receptor affinity. Specific binding of [3H]DMCM is regulated by unknown factors; e.g. enhanced binding was found by Ag+ treatment of membranes, in the presence of picrotoxinin, or by exposure to ultraviolet light in the presence of flunitrazepam. In conclusion, [3H]DMCM appears to bind to high-affinity brain BZ receptors, although the binding properties are different from those of [3H]flunitrazepam and [3H]PrCC. These differences might relate in part to subclass selectivity and in part to differences in efficacy of DMCM at BZ receptors.
    [Abstract] [Full Text] [Related] [New Search]