These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. Dissociation of internalized ligand from receptor occurs in two kinetically and thermally distinguishable compartments.
    Author: Oka JA, Weigel PH.
    Journal: J Biol Chem; 1983 Sep 10; 258(17):10253-62. PubMed ID: 6309798.
    Abstract:
    We have examined the rate of dissociation of internalized 125I-asialo-orosomucoid-receptor complexes in freshly isolated rat hepatocytes. Cell suspensions were washed with ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 0 degrees C to remove surface-bound ligand and then assessed for the retention of radioactive glycoprotein in the presence of digitonin, which permeabilized the cells and released the internal soluble contents. In cells which initially contained only surface-bound ligand, about 50% of the internalized ligand dissociated from receptor very rapidly (t1/2 less than or equal to 2.5 min, k greater than or equal to 0.28 min-1), at 37 degrees C, whereas the other 50% dissociated more slowly with apparent first order kinetics (t1/2 = 50 min, k = 0.014 min-1). This equal distribution of internalized ligand into two compartments, from which dissociation occurred with very different kinetics, did not depend on the extent of surface receptor occupancy and also occurred under non-steady state conditions of continuous exposure to ligand. Ligand entering both the rapid and slow dissociation compartments was eventually degraded with apparent first order kinetics (k = 0.0047 min-1), suggesting that the intracellular routing of ligand to lysosomes after dissociation from either compartment was via the same pathway. The fast and slow dissociation of receptor-ligand complexes were also distinguished by different temperature sensitivities; the slow dissociation process ceased below 18 degrees C, whereas the fast dissociation process still proceeded. The equal partition of internalized complexes into the two kinetic compartments did not change as a function of temperature but did change as cells continued to endocytose asialo-orosomucoid at 37 degrees C. As the internal receptor pool approached a steady state level of occupancy, there was an increase in the average time for receptor recycling and an increase in the fraction of incoming receptor-ligand complexes which dissociated rapidly (approximately 75%). In addition, under steady state conditions, the rate of the slow dissociation process increased (k = 0.026 min-1, t1/2 = 27 min).
    [Abstract] [Full Text] [Related] [New Search]