These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single chloride channels from Torpedo electroplax. Activation by protons.
    Author: Hanke W, Miller C.
    Journal: J Gen Physiol; 1983 Jul; 82(1):25-45. PubMed ID: 6310023.
    Abstract:
    Single-channel fluctuations of a chloride-specific channel from Torpedo californica electroplax were studied with high current and time resolution. Channels were incorporated into virtually solvent-free planar bilayer membranes formed from phospholipid monolayers, and the substructure of the open channel was analyzed. The single channel displays three well-defined substates of conductances 0, 10, and 20 pS in 200 mM Cl-. These three substates are interpreted in terms of a dimeric channel complex composed of two identical "protochannels" gating independently in parallel on a time scale of milliseconds, but coupled together by a bursting process on a time scale of seconds. The probability of forming an open protochannel is voltage dependent and is increased strongly as aqueous pH is lowered. Variations of pH are effective only on the same side of the bilayer as the addition of electroplax vesicles. The dependence of single-channel kinetics on pH and voltage lead to a minimal four-state model in which both open and closed states can be protonated on a residue that changes its pK from 6 to 9 upon opening of the protochannel.
    [Abstract] [Full Text] [Related] [New Search]