These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peptide neurohormones: their role in thermoregulation and fever. Author: Ruwe WD, Veale WL, Cooper KE. Journal: Can J Biochem Cell Biol; 1983 Jul; 61(7):579-93. PubMed ID: 6313154. Abstract: The neural elements of the rostral diencephalon in the mammal have been implicated in the regulation of body temperature. Moreover, it may be the neural elements within this region of the brain which activate the febrile mechanisms in response to pyrogen. Is it possible that the neuropeptides located within this area of the brain serve as neurochemical intermediaries involved in temperature regulation, fever, and (or) antipyresis? Central administration of several neuropeptides can elicit marked changes in the core temperature of an animal. Although most of these purative neuroregulators exert only a very minor influence on thermoregulation, a small number of the neuropeptides have been shown to have a profound effect on the system controlling this basic vegetative function. One of these peptides, arginine vasopressin (AVP) may play a role as an endogenous antipyretic. The neuroanatomical localization of this peptide, as well as its axonal projections, are consistent with such a role for this neurohypophyseal peptide in the mediation of antipyresis. In addition, current evidence suggests that AVP does function as a neurotransmitter. Examination of the febrile response to pyrogen in both the periparturient animal and the neonate indicates that an elevation in plasma levels of AVP is closely correlated with the diminution in the febrile response. Also, when AVP is perfused into punctate regions of the brain, a pyrogen-induced fever may be markedly suppressed AVP appears to act primarily within the septal area, 2- to 3-mm rostral to the anterior commissure. During the development of fever, the release of AVP is altered within these same loci. As body temperature decreases during the febrile state, there is a concomitant increase in the amount of AVP released into the extracellular fluid of these septal sites. Very recent findings suggest that AVP may have additional central neurochemical functions. For example, this peptide may be involved in the etiology of some forms of convulsive disorders. The precise manner in which body temperature is regulated by the central nervous system normally and during fever is not well understood.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]