These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nucleosome arrangement in green monkey alpha-satellite chromatin. Superimposition of non-random and apparently random patterns.
    Author: Wu KC, Strauss F, Varshavsky A.
    Journal: J Mol Biol; 1983 Oct 15; 170(1):93-117. PubMed ID: 6313939.
    Abstract:
    We have studied the structure of tandemly repetitive alpha-satellite chromatin (alpha-chromatin) in African green monkey cells (CV-1 line), using restriction endonucleases and staphylococcal nuclease as probes. While more than 80% of the 172-base-pair (bp) alpha-DNA repeats have a HindIII site, less than 15% of the alpha-DNA repeats have an EcoRI site, and most of the latter alpha-repeats are highly clustered within the CV-1 genome. EcoRI and HindIII solubilize approximately 8% and 2% of the alpha-chromatin, respectively, under the conditions used. EcoRI is thus approximately 30 times more effective than HindIII in solubilizing alpha-chromatin, with relation to the respective cutting frequencies of HindIII and EcoRI on alpha-DNA. EcoRI and HindIII solubilize largely non-overlapping subsets of alpha-chromatin. The DNA size distributions of both EcoRI- and HindIII-solubilized alpha-chromatin particles peak at alpha-monomers. These DNA size distributions are established early in digestion and remain strikingly constant throughout the digestion with either EcoRI or HindIII. Approximately one in every four of both EcoRI- and HindIII-solubilized alpha-chromatin particles is an alpha-monomer. Two-dimensional (deoxyribonucleoprotein leads to DNA) electrophoretic analysis of the EcoRI-solubilized, sucrose gradient-fractionated alpha-oligonucleosomes shows that they do not contain "hidden" EcoRI cuts. Moreover, although the EcoRI-solubilized alpha-oligonucleosomes contain one EcoRI site in every 172-bp alpha-DNA repeat, they are completely resistant to redigestion with EcoRI. This striking difference between the EcoRI-accessible EcoRI sites flanking an EcoRI-solubilized alpha-oligonucleosome and completely EcoRI-resistant internal EcoRI sites in the same alpha-oligonucleosome indicates either that the flanking EcoRI sites occur within a modified chromatin structure or that an altered nucleosome arrangement in the vicinity of a flanking EcoRI site is responsible for its location in the nuclease-sensitive internucleosomal (linker) region. Analogous redigestions of the EcoRI-solubilized alpha-oligonucleosomes with either HindIII, MboII or HaeIII (both before and after selective removal of histone H1 by an exchange onto tRNA) produce a self-consistent pattern of restriction site accessibilities. Taken together, these data strongly suggest a preferred nucleosome arrangement within the EcoRI-solubilized subset of alpha-oligonucleosomes, with the centers of most of the nucleosomal cores being approximately 20 bp and approximately 50 bp away from the nearest EcoRI and HindIII sites, respectively, within the 172-bp alpha-DNA repeat. However, as noted above, the clearly preferred pattern of nucleosome arrangement within the EcoRI-solubilized alpha-oligonucleosomes is invariably violated at the ends of every such alpha-oligonucleosomal particle, suggesting at least a partially statistical origin of this apparently non-random nucleosome arrangement.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]